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SECTION I

INTRODUCTION

The calculation of the propagation and distribution
of transient electromagnetic energy within the internal
regions of aircraft and missiles frequently employs trans-
mission line theory. As outlined in other reports (refs. 1,2,3)
solutions using this method often involve the assumptions
of having only a single conductor transmission line instead
of a multiconductor line, of considering only TEM moaes
of propagation on the line, and of having a uniform trans-
mission line.

As indicated in ref. (2), a number of improvements
can be made to increase the modeling accuracy for treating
chese problems found in the area of electromagnetic pulse (EMP)
internal interaction. One general class of improvements con-

sists of adding a tee network of lumped, passive elements to

an otherwise uniform transmission line, so as to account

for a perturbation in the local transmission line geometry.

1. Tesche, F.M., et al., "Internal Interaction Analysis:
Topological Concepts and Needed Model Improvemegts,"
AFWL-TR-75-282, Air Force Weapons Laboratory, Kirtland
Air Force Base, NM, October 1975.

2. Tesche, F.M., et al., "Evaluation of Present Internal
EMP Interaction Technology: Description of Needed
Improvements," AFWL-TR-75-288, Air Force Weapons
Laboratory, Kirtland Air Force Base, NM, October 1975.

3. Boeing Aircraft Corporation, "Common Mode Model Development
for Complex Cable Systems," Boeing Report D224-10015-4,
June 19, 1973,
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Using this approach, an equivalent tee circuit for a
single cable clamp on a transmission line has been developed
in ref. (4). Other "canonical" problems which have been
recently investigated include a cable passing over a thin
septum (ref. 5), a cable passing near a hole in the ground

plane (ref. 6), and a cable with a sharp bend (ref. 7).

An investigation of actual aircraft cable layouts
shows that there is often more than just one perturbation
to a transmission line. Many times, multiple loading of
a transmission line will occur in a periodic fashion, as
in a transmission line passing over a series of ribs
within the aircraft, or for a line fastened periodically
to a metallic wall by cable clamps. In a recent report

(ref. 8), Lam investigated the behavior of a cable passing

4. Tesche, F.M., and T.K. Liu, "An Electric Model for a
Cable Clamp on a Single Wire Transmission Line," AFWL-
TR-76-325, Air Force Weapons Laboratory, Xirtland Air
Force Base, NM, December 1976.

5. Coen, S., T.K. Liu and F.M. Tesche, "Calculation of the
Equivalent Capacitance of a Rib near a Single-Wire
Transmission Line," AFWL-TR-77-60, Air Force Weapons
Laboratory, Xirtland Air Force Base, NM, February 1977.

6. Lee, K.S.H., and F.C. Yang, "A Wire Passinag by a Circular
Aperture in an Infinite Ground Plane," AFWL-TR-77- A
Air Force Weapons Laboratory, Kirtland Air Force Base,
NM, Febraury 1977.

7. Lam, J., "Equivalent Lumped Parameters for a Bend in a
Two-Wire Transmission Line," AFWL-TR-77-5, Air Force
Weapons Laboratory, Kirtland Air Force Base, NM,
January 1977.

8. Lam, J., "Propagation Characteristics of a Periodically
Loaded Transmission Line," AFWL-TR-76-324, Air Force
Weapons Laboratory, Kirtland Air Force Base, NM,
December 1976.
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over periodic obstacles using Flogquet's theorem. By postu- a

lating an infinite transmission line loaded at regular
intervals with identical, symmetrical tee sections, the

dispersion relation for determining the wave propagation

was developed. This leads to various relations for the
propagation constant, pass and stop bands, and phase and group
velocity on the line.

Aircraft cables, however, rarely occur as a single
wire transmission line. Usually they are multiconductor
cables with a wide variety of loads. Nevertheless, such
cables are often modeled as a single wire transmission line
with an "appropriate" load impedance. The choice of the best
load impedance for the single wire model is an important .
consideration for the use of this simplified internal inter-
action analysis technique.

This report investigates these various topics and
their importance in EMP analysis. Section II suggests 2
technique for determining when the effects of an isolated
perturbation along a single wire transmission line can be
ignored and when it must be considered in the analysis of
transient currents flowing on the line. Section III goes on
to consider the effects of more than one obstacle which is
periodically positioned along the line. Unlike the analysis

of ref. (8), however, we consider a finite number of

B E——————




periodic obstacles and compare results with those obtained by
Floquet's theorem.

Section IV discusses general multiconductor transmis-
sion line theory and the relation between the total or "bulk"
current on a multiconductor line and the current flowing on
a single conductor line having svitably chosen loads and
characteristic impedance. Specific formulae are presented
for determining these quantities for an aribtrary multicon-

ductor line, and a number of examples are given.




SECTION II

IMPORTANCE OF EFFECTS OF PERTURBING OBSTACLES

As described in refs. (4) through (8), the effects of
a localized discontinuity in an otherwise uniform transmission
line can be represented by a tee network of lumped, passive
elements inserted in the transmission line. As an example,

consider a single wire line over a ground plane and passing

near an electrically small obstacle, as in Figure 1. Figure 2
illustrates the transmission line model for this case, with
the obstacle effects represented by the capacitance and induc-

tance elements of the tee network.

In applying the results of the canonical problems to

a single line model of aircraft wiring, it is often useful

to estimate the overall effect of a particular line pertur-

bation before carrying out a complete transient analysis of
the transmission line. If a particular line perturbation will
only marginally affect the response at a load, then it need
not be considered in the transmission line model.

One measure of the importance of a line perturbation
is the reflection coefficient, ¢. This quantity is defined

as

11
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where V™ 1is the reflected voltage wave (propagating to
the leftof A-A' in Figure 2) and vt is the incident voltage
wave. Of particular interest is the reflection coefficient
p at the terminals A-A' of the equivalent two-port network
representing the perturbing obstacle.
The reflection coefficient at A-A' will depend
upon the termination impedance of the line to the right of
terminals B-B' . However, since we are interested in the
effects of perturbing obstacle alone, it is convenient to
assume that the line connected to B-B' is perfectly
matched. 1In this manner, the reflection coefficient at
A-A' will depend only on the obstacle parameters, the
line characteristic impedance, and the operating radian
frequency w. |
As is well known (ref. 9 ), the reflection coefficient

at A-A' can be expressed as

2o ==
L [

0 = (1)
Z; + %:

where 2, is the characteristic impedance of the transmission

line, and ZL is the load impedance presented by the circuit

and transmission line to the right of A-A'.

Since the line to the right of B-B' 1is assumed to

be matched, the load impedance ZL can be computed by

9. Ramo, S., and J. Whinnery, Fields and Waves in Modern
Radic, John Wiley & Sons, New York, 1964.

13
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considering the circuit shown in Figure 3. Using s = 0+ jw
for the complex frequency, where j = V-1, elementary

circuit analysis shows that the impedance at terminals A-A' is

s312c + s’Lcz, + 2sL + Z,

2. (s) = (2)
5 s’Lc + scz, + 1

It is convenient to introduce a normalized frequency

p and a normalized impedance £ as

p = s/iC (3)
and
Er 1
£ = = (4)
(@ Zc
so as to simplify Equation (2). 1In this manner, the impedance

can be written as

p3 + p% + 2pE + 1 5
p2 + p/€ + 1

ZL(p) g zc

By inserting Equation (5) into Equation (1) and

simplifying, the reflection coefficient becomes

ps? + 2 - 1/6%) &
P’ (PE+2) + P(2E+1/E) + 2

p =

14

—




Figure 3. Impedance at A-A' Presented
by Equivalent Tee Network Loaded
by Infinite Transmission Line
at B-B'.
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It is important to realize that the values of L

and C in the equivalent tee circuit for the obstacle may
be positive or negative quantities. Thus, care must be used
in evaluating Equations (3) and (4) for p and & . It
may be seen that the following sets of values for p and

& must be used in evaluating Equation (6):

p = s/IC Ty’ 0
or
e b L L,0< 0
e Z

orxr
p=jS\]lLCI )
and
e L c>o0
5 =1 '6‘
or

o
"
.
0]
o I
Lz
3

>0

and

: Li i £ <0
2N el
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The behavior of p as a function of frequency for
a specific set of obstacle parameters L and C gives an
indication of the importance of the obstacle interaction
on the transmission behavior. 1If, for example, the magnitude
of p 1is -~ry small for a particular L and C over a
specifie . ~ange, the obstacle could be neglected
in the tr:. line model.

For the case of L and C both positive or negative,
Figure 4 shows a plot of the magnitude of the reflection
coefficient from Equation (6) as a function of the normalized E
frequency, p=wvLC, for various values of e It can be
noted from Equation (6) that there is a zero in the reflec-

tion coefficient at the frequency

p, = = V1/E2 - 2 (7)

When £ < V2/2, this zero is real, occurring on the o
axis in the complex frequency plane. For £ > V/2/2, however,
the zero is imaginary and is located along the jw axis.
Thus, we expect the curves of |p| for & >0.707... to be
substantially different from those for |po| presented in
Figure 4.

Figure 5 shows the magnitude of the reflection coef-

ficient vs. normalized frequency for various £ > 0.707....

Y
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Figure 4. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency
for £ S 0.707. |
(L and C both have same sign.) .
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Figure 5. Plot of Reflection Coefficient
Magnitude vs. Normalized Fregquency
for & 2 0707
(L and C both have same sign.)
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The effect of the zero in the reflection coefficient is
clearly indicated.

For many EMP problems, it is expected that the re-
flection coefficient of a perturbing obstacle will be rather

small, especially near the low-frequency end of the EMP i

spectrum. Since Figures 4 and 5 have poor resolution for
low frequencies, Figures 6 and 7 show the reflection coef-
ficient for a range of ..2C from 0 to 0.1.

A similar set of curves can be drawn for the case
when L and C are of opposite signs. A careful examination
of this case shows that there is no resonance effect which
caused the null in the reflection coefficient for certain
values of ¢ in the previous case. The curves for |p| in
this case are all monotonically increasing functions of
normalized frequency w“J|LC[ and are shown in Figures 8
and 9 for the range of 0 to 4 in normalized frequency.
As in the previous case, the family of curves exhibit a
decreasing dependence on [g| for 0 < |g| < 0.707 and
an increasing dependence for |g] > 0.707.

Figures 10 and 11 present the reflection coefficients
for the same cases over a smaller frequency interval to
illustrate the low frequency behavior more clearly.

In some instances, it may be expected that an obstacle

will present a strong capacitive discontinuity to the

20
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Figure 6.

Normalized Frequency wvLC

Expanded Plot of Reflection Coefficient
Magnitude vs. Normalized Freguency for
& & 0.707.

(L and C both have the same sign.)
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Normalized Frequency wvLC

Figure 7. Expanded Plot of Reflection Coefficient

Magnitude vs. Normalized Frequency for
A I

(L and C both have the same sign.)
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Figure 8. Plot of Reflection Coefficient

Magnitude vs. Normalized Frequency

for 8] £ 0. .70V,
(L and C have opposite signs.)
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Figure 9. Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency
for (G e 0,197,
(L and C have opposite signs.)




Normalized Frequency u\/|LC|

Figure 10. Expanded Plot of Reflection Coefficient
Magnitude vs. Normalized Fregquency for

1§l & 0.707. _
(L and C have opposite signs.)
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Normalized Freguency w-JILCI

Figure 11. Expanded Plot of Reflection Coefficient
Magnitude vs. Normalized Frequency for
Is? 2 0.707.

' (L and C have opposite signs.)
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transmission line, with the inductance elements of the
two-port network in Figure 2 being either absent or having
very small values. Such was the case in ref. (5). Under
these circumstances it is difficult to employ Figures 4
through 11 to assess the importance of the obstacle, since
the normalized frequency p approaches zero and the
normalized impedance approaches either zero or infinity
at the same time.

To consider this case, the load impedance at A-A'
for zero inductance can be written directly from Equation (2)

as

ZL(S) =530 51 (8)

which immediately gives a reflection coefficient from

# Equation (1) as
SCZc
p(s) = - —S_éic—-*’_f (9)

Defining a new normalized complex frequency s, as

s, = sCZ, (10)

the reflection coefficient becomes

=S

n
D(Sn) il

n

(11}

217
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In a similar fashion, if the obstacle presents

only an inductive discontinuity, the impedance at A-A' |is
ZL(s) = Zc + 2sL (12)

and the reflection coefficient becomes

[o] (Sn) = 's__ﬁ (13)

Sh= 5 (14)

Notice that the magnitude of p from Equations (11)
or (13) is not dependent on the sign of L or C. Moreover,
the magnitudes of Equations (11) and (13) are identical.
Hence, only one plot of this simple function is presented
in Figure 12.

As an example of the use of these curves, suppose that
a transmission line with a characteristic impedance
Zc = 100 ohms passes near a perturbing obstacle. If the
values of inductance and capacitance are found to be

L = 2.5><10-9 henrys and C = 6><10-12 farads from the

solution of a particular canonical problem, the normalized

28
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Figure 12. Plot of Reflection Coefficient Magnitude
vs. Normalized Frequency for Inductive
or Capacitive Discontinuity.
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impedance £ becomes
-afe L o
£ z .204 (15)

and the normalized complex frequency p becomes

p=vI€C s =1.225x10"10 g (16)

In looking at the imaginary part of the normalized frequency,

denoted by w (i.e., p=o0 + 3 ), we have

w
norm norm norm

b -10
W opm = 1-225%10 © (17)

If one assumes that the effects of a reflection coef-
ficient macnitude of less than 0.1 can be safely ignored in the
analysis using the transmission line model, it is then
possible to determine the frequency range over which this
approximation is valid. For example, from Figure 6 it is
noted that for £ =0.2, |o| is less than 0.1 for the
normalized frequency wj less than about 0.05 . Hence,

for radian frequencies w such that

.05

w < —2 s = 4.08x10% raa/sec
1.225x10

30




or frequencies f so that

f < 64.9 megahertz

the effects of the line perturbation can be ignored. Above
this frequency, of course, the effects become more pronounced
and the overall transmission line model should then include

the equivalent tee circuit.
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SECTION III

CONSIDERATIONS FOR PERIODICALLY LOADED TRANSMISSION LINES

In the last section, the reflection coefficient for a
single equivalent tee network on an infinite transmission
line was considered. It was suggested that if the reflection
coefficient were sufficiently small, the effects of the net-
work in question could be neglected. This analysis, however,
was based on the assumption that the line to the right of
the network was infinite and uniform.

As has been noted in ref. (2), aircraft cables often
see periodic perturbations along their lengths. Mutual
interaction between two adjacent line perturbations can
cause a substantial difference in line behavior from the
single perturbation case. Hence, lines with periodically
spaced discontinuities should be treated with care.

Ref. (8) has investigated the behavior of infinitely
long, periodically loaded transmission lines using Flogquet's
theorem. Various relations for the propagation constant,
pass and stop bands, as well as phase and group velocities
were developed. The use of the above approach suffers from
a number of difficulties, however. 1In the actual problem,
one is interested in finite lines, not infinite ones. More-
over, it is not usually required to determine the line

voltage or current at a point on the transmission line, but
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rather, at the load end of the line. This cannot be computed
using the Floquet theorem approach. In addition, the impact
of periodic loading on the behavior of the transient
results is not immediately obvious from the infinite line
results.

This section investigates the effect of periodic
loading on a finite length of transmission line, and compares
the results, when possible, to those obtained from Floguet's

theorem.

Consider a transmission line of total length L,
characteristic impedance Zc and propagation constant .
At N points along the transmission line, there are
perturbations in the line, and their effects are represented
by a series of lumped parameter tee networks, as shown
in Figure 13. These line perturbations are assumed to be
at distance & apart, and the physical size of the pertur-
bation is assumed to be small compared to 2. Due to the
periodicity of the line loading, the entire line may be
thought of as consisting of N cascaded fundamental
sections of line, as shown in Figure 13h, plus a load and
source section which are uniform lines of lengths KL
and 18 respectively.

In this manner, the entire line may be represented

as shown in Figure 13c¢c, with the condition
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)

QS + QL + N2 (18)

i

being enforced.

We are interested in computing the transient voltage

induced across the load impedance ZL' For convenience,

we will assume that the source voltage is a step function

in time occurring at t = 0. To obtain this transient

result, we will first obtain a time harmonic expression
for the load voltage (ej‘“t time dependence assumed) and
later construct the time domain result using Fast Fourier
Transform (FFT) methods.

The analysis of a number of transmission lines
which are cascaded together (or for that matter, any two-
port network) is facilitated by using the chain (or trans-
mission) parameters (ref. 10). Considering a linear two-port
network in Figure l4a, the chain parameters A, B, C, D may
be used to express Vl and Il in terms of V2 and I2

as

& (19)

10. Seshu, S., and N. Balabanian, Linear Network Analysis,
John Wiley & Sons, New York, 1959.
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For two networks connected, as in Figure 14b, the V-I

relationship is given by the product of two matrices as

[
=il
=il

ME S (20)

where ?l is the matrix for the first network given by
Tl = (21)
and T

2 is given by

2 {22}

Ll
1

The fundamental section which comprises the trans-
mission line can be viewed as consisting of two parts,
as illustrated in Figure 15. The first is a uniform trans-
mission line of length & and the second is the tee
network.

From simple transmission line theory (ref. 11), the

transmission matrix for a line of length £ 1is given by

11. King, R.W.P., Transmission-Line Theory, Dover, 1965.
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Figure 15. Fundamental Section for Periodic
Transmission Line.
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cosh(yg) ZO sinh(yyg)

fl = (23)
X sinh(yg) cosh(yg)

25
where vy 1is the propagation constant of the line.
Similarly, simple circuit analysis applied to the
equivalent "T" circuit representing the discontinuity

gives the following transmission matrix:

e ]
+ Z; 7, (2125 + 2125 + 2,23)
T, = g (24)
éL-
e 3 2

Following Equation (20), the fundamental section of the
periodic line can now be described by the transmission

matrix, T where

S !

which when expanded out, becomes




(

2 ,+2Z

Z3 Zo

Z
2

cosh (yt) (1 + =

1
3

)

Z

&,

sinh (yg)

1 sinh(yg) + cos?ilg)

3

cosh(y?)
B o

e Zo sinh(yv2) Gp+——

sinh(Y2)
S

(2
Z3 o)

1%

+ cosh (y2) (l +

1

2y

3

=S

+2 Z3+Z Z

)

+2,2.,+2

2_2)
3

(25)

Using this last expression for the transmission through
a single fundamental section, the transmission matrix for

the entire N section transmission line is given by

(26)

where T is the transmission line matrix for the line of

2

length QS and is given by Equation (23) with 2 = QS_
Similarly, ?L is the transmission matrix for the line of

length ¢ Denoting the individual elements of the total

L
transmission matrix TT as AT ,BT r G

and D the

T :

V-1 relationship for the entire line is then given by
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where the minus sign occurs due to our choice of the

direction of current flow. Similarly, at the source end

of the line, the relationship
Ve =2V & 2= T (29)
holds.

Substituting these last two equations into Equation (27),

we can solve for the load voltage VL as

t S R P B L L, e D (30)

This expression can be easily evaluated for a large number
of frequencies by first performing the chain of matrix
multiplications indicated by Equation (26) and then obtaining

the parameters A and D,. The time-dependent

T’BT'CT' 1
voltage VL(t) is then obtained by Fourier inversion.
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As an example of the effects of periodic loading on
finite transmission lines, a simple tee network model of a
cable clamp was used to represent the periodic perturba-
tions on the transmission line. The actual line geometry
was that illustrated in Figure 13b, with the lengths
zs and lL set to zero.

For this example, the series impedance elements

z, and 2, were chosen to be inductors of 1.0x10"7

henrys each, and the shunt impedance element, Z3 , was a
capacitor of 9.7x10" 2 farads. For this case, the unper-
turbed transmission line characteristic impedance was assumed
to be 120 ohms, a value which is consistent with the dimen-
sions of the transmission line passing through the cable
clamp. It was assumed that there was a 0.4 meter separation

between clamps, so that the fundamental section parameters,

as shown in Figure 15, take on the following values:

2. = 120 (ohms)

1

Y=;jw/3Xl08 (meter ™)

L = .4 (meter)

Z, = 2. = jw 1.0x10"° (ohms)

1 2
3L

2 1./(jwx9.7x10 ~“) (ohms)

3

It was assumed that the source and load impedances of the
transmission line, Zs and ZL + were equal to the line
impedance.
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Figure 16 shows the magnitude of the load voltage
VL as a function of frequency for various numbers of cable
clamps. This represents the delta function spectrum of
the load voltage, since the excitation voltage VS was
taken to be unity for all frequencies.

For N =0 (i.e., no cable clamps present), it is
seen that the load response is constant in frequency,
with a value of 0.5 times the source voltage. As the
number of line perturbations increases, it is apparent
that distinct pass and stop bands begin to form.

Equations (29) of ref. ( 8) provides a transcendental
equation for the pass and stop band frequencies for the
infinite transmission line. These frequency bands are
illustrated on Figure 16 for comparison. As may be noted,
the pass-stop band structure begins to develop with only
two perturbations on the line, and with 10 perturbations,
the pass-stop frequencies agree very well with the infinite ]
case.

One difficulty with the infinite line analysis is
that there is no information easily obtainable regarding

the transient response of the loaded transmission line.

Figure 17 shows the computed normalized time domain load

voltage for a step-excited source and various numbers of
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cable clamps. In each case, the origin t = 0 has been ]
shifted by a time corresponding to the wave transit time :
from the source to the load through a transmission line
of total length L = Nf&. Thus, if the effect of the
clamps were negligibly small, each of the curves would
turn on at t = 0. The cable clamps, however, introduce 3
an additional time delay in the signal arrival, as is
seen from Figure l7. As more sections are considered, this
time delay grows, but the resulting peak value of the load
voltage does not change radically. However, the response rise
time becomes slower as the numbers of sections are increased.
In Figures l6and 17, as more cable clamgs

were considered, the total transmission line became longer.

It is of some interest to consider a fixed length of line
and observe the effects of increasing the number of line
perturbations. Figures 18a through 18e show the delta function
1 magnitude spectrum and step function transient response
for the load voltage across a line of total length
L = 8 meters. As before, the characteristic impedance
was chosen to be 120 ohms, to be consistent with the cable
clamp dimensions, and the line was terminated in this impe-
dance at both ends.

For no line perturbation, the voltage magnitude
spectrum is a constant of value 0.5 and the step response

is a step occurring at t = 0. These results are not
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presented due to their simplicity. Figure 18a treats

the case of a single clamp on the transmission line.

The clamp in this case is located at the load end of

the line. The effect of this clamp on the load voltage
shows up in a high frequency roll-off of the voltage
spectrum, and a decrease in the rise time of the transient
voltage. For the particular values of impedance elements
for the clamp model, it is seen that the effect of the
clamp on the load voltage is not particularly significant.

Figures 18b-e showthe impluse spectrum and step
response of the load voltage for various numbers of identical
clamps spaced equally on the transmission line of 8 meters
in length. These cases are considerably different from
the case of a single clamp, due to the reflection of
waves within the various peaks occurring in the transient
response, as well as create the pass-stop band structure
in the spectrum.

In some circumstances, a set of obstacles near the
transmission line may present only a strong capacitive
discontinuity to waves propagating on the line. 1In these
cases, we may neglect the inductive elements in the Tee
model of the obstacle and treat the line with periodic
capacitive loading. Such would be the case of a line

passing over a series of thin ribs protruding from the
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Figure 18a. Magnitude of load voltage impulse spectrum (i)

and step excited time response (ii) for an
8-meter line with 1 cable clamp.
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Figure 18b. Magnitude of load voltage impulse spectrum (i)
and step excited time response (ii) for an
8-meter line with 2 cable clamps.
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Figure 18c. Magnitude of load voltage impulse spectrum (i)
and step excited time response (ii) for an
8-meter line with 3 cable clamps.
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Figure 18e. Magnitude of load voltage impulse spectrum (i)
and step excited time response (ii) for an
8-meter line with 10 cable clamps.
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ground plane. Figures 19a through 19e show the effects of
such periodic capacitance loading on a typical transmission
line.

For this example, a transmission line of character-
istic impedance Zo = 100 and length L = 8 meters was
loaded with 10 equally spaced capacitances. The line was
matched at both the input and output ends and the load voltage
impulse spectrum and step response was computed for various é
values of capacitive loading. For the transmission line
under consideration, the line capacitance per unit length C'

10

was 3.33x10 farads/meter, thus giving a total capacitance 5

10

of Cs = C'xg = 2.66x10° farads for each section of

transmission line between the periodic capacitances. Values

of the capacitive loading were C/Cg = 0.00375, 0.0375, 0.1, 0.1875,
and 0.375, where C represents the capacitance of the rib.

As may be noted in Figure 19, the presence of the

capacitance discontinuities has a marked effect on the
spectrum of the load voltage. However, for the transient
response, the major effect of the periodic loadinag is in

a time delay caused by a slowing of the group velocity on

the transmission line. The peak of the transient voltage wave-
form across the load at times exceeds the voltage pre-

dicted without considering the capacitances in the line.

This over-voltage, however is seen to be only about 25%

of the peak value in the worst case, and may not be
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Figure 19a.

Magnitude of load voltage impulse spectrum (1)
and step excited time response (ii)
8-meter, 100 ohm, transmission line with 10

capacitive discontinuities of C/C = 0.00375.
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Figure 19b. Magnitude of load voltage impulse spectrum (i)
and step excited time response (ii) for an
8-meter, 100 ohm, transmission line with 10
capacitive discontinuities of C/Cg = 0.0375.
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Figure 19c. Magnitude of load voltage impulse spectrum (i)
and step excited time response (ii) for an
8-meter, 100 ohm, transmission line with 10
capacitive discontinuities of c/cg*= Ovd
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particularly important if only order of magnitude responses

are desired. Figure 20 shows the difference between the peak
voltage with the capacitance present, and the voltaae without
capacitance, expressed as a percentage of the latter, as a

function of the normalized discontinuity capacitance C/Cg .

However, as observed in Figure 19, the risé time of the voltage

response increases for larger discontinuity capacitance.

It is difficult to draw many general conclusions from
this study of a particular line perturbation other than to
say that care should be exercised in defining the electrical

model for internal EMP calculations. Periodically spaced

obstacles can have a marked effect on transmission line
behavior and may be required in a model if accurate results
are desired. The techniques discussed here can be easily
utilized in a transmission line analysis for treating a

specific case.

From an examination of the computed results in the
previous figures, it is apparent that there is a much more
pronounced effect in the frequency domain response than in
the transient results. This is because the step function
voltage driving the transmission line has a rather large
bandwidth, encompassing many pass and stop bands. The effects
of the pass-stop band nature are therefore somewhat masked
through the Fourier transform process in going to the time
domain.

If one assumes a more realistic voltage waveform,
such as a damped sine wave, which would correspond to the

excitation provided by skin currents and charges induced on
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the exterior of an aircraft, it is expected that the pass-
stop band nature of the frequency response would be much more
important for the transient response. This would be
especially true if the fundamental frequency of oscillation
of the excitation occurred in the region of a stop band.

In that case, very little EMP energy would be transmitted

to the load. Such effects must be carefully considered

in an EMP system assessment.
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SECTION IV
RELATIONSHIPS BETWEEN SINGLE-WIRE TRANSMISSION LINE +

CURRENT AND THE BULK CURRENT ON A MULTICONDUCTOR LINE

An often used technique for analyzing internal inter- j
action problems is to model multiconductor transmission lines

by single wire transmission lines. Not only are the formu-

lation and analysis of problems made simpler, but the computer
programs needed to obtain numerical results are relatively
simple to write and they execute quickly.

In performing such a simplified analysis, it is
desirable to determine the appropriate single line parameters
in terms of the parameters defining the multiconductor line.
One way to do this is to require that the current on the
single wire transmission line have similar behavior to the
bulk or total current flowing on a multiconductor line. To
assure this requirement, it is necessary to choose an
optimum load impedance and characteristic line impedance for
the single wire model, using knowledge of the multiconductor
line. An alternate way is to equate the single-wire voltage
to the averaged quantity of the voltages on the multiconductor
line. However, this latter method is not studied here.

Consider an N wire multiconductor transmission line,
as shown in Figure 2la. At 2z = 0 there is a generalized
termination impedance matrix 75 and at z = ¢ , there is
a similar impedance 72- At an arbitrary position along

the line, there are N voltages relative to the reference

conductor (the O0th wire) which are represented in vector
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form as V(z) . Similarly, the wire currents are denoted

as I(z). Both I and V are complex N-vectors. It is

desired to represent the behavior of the bulk current on

this multiconductor transmission line by the single

line illustrated in Figure 21b with appropriate choices of

Zs r Z2 and zc.
For the multiconductor transmission line, it is well

known that the spatial dependence of I and V are des-

cribed by a set of 2N transmission line equations given

in ref. (12) as
V(z)
L (31)
I(z)

a (V(z)) = s(o
92 \¥(2) g

where s 1is the complex frequency, O 1is an NxN zero

il

ol

matrix, L and C are respectively the per-unit-length
inductance matrix and the per-unit-length capacitance
matrix, both being NxN in dimension.

Equation (31) must be solved subject to the appropriate
boundary conditions at z = 0 and 2z = 2. For the example

of Figure 21, it is seen that these conditions are

12. Kajfez, D., "Multi-Conductor Transmissiop Lines,"
EMP Interaction Note Series, Note 151, Air Force
Weapons Laboratory, RKirtland Air Force Base, NM,
June 1972.
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V) =T -7 T(0) (at z

0) (32a) |

and 3

[}
o3|
H|
_—
x>
N

Vi(g)

(at 2z L) (32b)

Equation (31) can be decoupled to yield two second-

order differential equations for I and V as

Q_% =a2CT I(z) (33)
dz

and
dzv 2==_
=3 = 8" L C ¥(z) (34)
dz

As discussed by Liu (ref. 13), the product C L
in Equation (33) is often assumed to be a diagonal matrix
of the form

T = 7] (35)

(p]]

L
2

v

where U is the NxN wunity matrix and v 1is the propa-

gation velocity of waves on the line. This special case

occurs for wires in a homogeneous medium.

13. Liu, T., "Electromagnetic Coupling between Multiconductor
Transmission Lines in a Homogeneous Medium," AFWL-TR-76-
333, Air Force Weapons Laboratory, Kirtland Air Force
Base, NM, December 1976.
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For a multiconductor transmission line in an inhomo-
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